Lösungen

26. Der Weg zum bestimmten Integral

C. Aufgaben zum Grundstoff

- 1. a) 2
- b) 4

- c) ≈ 13.069
- d) 18.75

- e) ≈ 31.819
- f) ≈ 35.819
- 2. a) Fahrzeug 1 ist zum Zeitpunkt t schneller unterwegs als Fahrzeug 2.
 - b) Fahrzeug 1 beschleunigt zum Zeitpunkt t weniger stark als Fahrzeug 2.
 - c) Fahrzeug 1 legt in den ersten 30 Sekunden denselben Weg zurück wie Fahrzeug 2.
 - d) Fahrzeug 1 fährt in den ersten 30 Sekunden gleich weit wie Fahrzeug 2 zwischen Sekunde 20 und Sekunde 40.
- 3. a) Zu diesem Zeitpunkt t sind die beiden Fahrzeuge gleich schnell.
 - b) t=6 s
- 4. Der Zug hat zum Zeitpunkt t_0 Verspätung $\Leftrightarrow \int\limits_0^{t_0} v_t(t) dt < \int\limits_0^{t_0} v_s(t) dt$.
- 5. $\int_{t_1}^{t_2} a(t)dt$ gibt an, um wie viel die Geschwindigkeit zwischen den Zeitpunkten t_1 und t_2 grösser geworden ist.
- 6. Als physikalische Arbeit W, welche die Physiotherapeutin erbringt.
- 7. Als gesamte Wassermenge, die zwischen den Zeitpunkten t_1 und t_2 an der Messstelle vorbeifliesst.
- 8. —
- 9. $28.3 \text{ m} \le \text{s} \le 36.3 \text{ m}$
- 10. a) $U_2 = 0.125$, $O_2 = 0.625$; $U_4 \approx 0.219$, $O_4 \approx 0.469$

b)
$$U_2 = 0.375$$
, $O_2 = 1.875$; $U_4 \approx 0.656$, $O_4 \approx 1.406$

c)
$$U_2 \approx 0.194$$
, $O_2 \approx 4.649$; $U_4 \approx 0.347$, $O_4 \approx 2.575$

d)
$$U_2 \approx 353.553$$
, $O_2 \approx 853.553$; $U_4 \approx 518.283$, $O_4 \approx 768.283$

e)
$$U_2 \approx 0.203$$
, $O_2 \approx 0.549$; $U_4 \approx 0.297$, $O_4 \approx 0.470$

f)
$$U_2 \approx 1.368$$
, $O_2 \approx 3.718$; $U_4 \approx 1.812$, $O_4 \approx 2.987$

g)
$$U_2 \approx 0.555$$
, $O_2 \approx 1.341$; $U_4 \approx 0.791$, $O_4 \approx 1.183$

h)
$$U_2 \approx 0.433$$
, $O_2 \approx 0.933$; $U_4 \approx 0.624$, $O_4 \approx 0.874$

- 11. a) $U_{1000} \approx 0.333$, $O_{1000} \approx 0.334$
 - c) $U_{1000} \approx 0.896$, $O_{1000} \approx 0.904$
 - e) $U_{1000} \approx 0.386$, $O_{1000} \approx 0.387$
 - g) $U_{1000} \approx 0.999$, $O_{1000} \approx 1.001$
- 12. $\int_{0}^{b} x^{3} dx = \frac{1}{4}b^{4}, \int_{a}^{b} x^{3} dx = \frac{1}{4}b^{4} \frac{1}{4}a^{4}$
- b) $U_{1000} \approx 0.999$, $O_{1000} \approx 1.002$
- d) $U_{1000} \approx 666.160, O_{1000} \approx 667.160$
- f) $U_{1000} \approx 2.348$, $O_{1000} \approx 2.353$
- h) $U_{1000} \approx 0.785$, $O_{1000} \approx 0.786$

13. a) $\frac{1}{5}b^5$ und $\frac{1}{5}b^5 - \frac{1}{5}a^5$

- b) $\frac{1}{6}b^6$ und $\frac{1}{6}b^6 \frac{1}{6}a^6$
- c) $\frac{1}{n+1}b^{n+1}$ und $\frac{1}{n+1}b^{n+1} \frac{1}{n+1}a^{n+1}$
- d) $e^b 1$ und $e^b e^a$

D. Anspruchsvollere Aufgaben zum Grundstoff

1.
$$\int_{0}^{b} x^{3} dx = \frac{1}{4}b^{4}, \int_{a}^{b} x^{3} dx = \frac{1}{4}b^{4} - \frac{1}{4}a^{4}$$

Herleitung: Unterteilt man das Intervall [a, b] in n gleich breite Teilintervalle, wird

 $\Delta x = \frac{b}{n}$. Die Obersumme O_n für das Integral $\tilde{\int} x^3 dx$ ist

 $O_n = \Delta x \cdot \underbrace{\left(\Delta x^3 + (2\Delta x)^3 + (3\Delta x)^3 + ... + (n\Delta x)^3\right)}_{\Delta x^3 \cdot \underbrace{\left(1^3 + 2^3 + 3^3 + ... + n^3\right)}_{\frac{1}{2}n^2(n+1)^2}} = \Delta x^4 \cdot \frac{1}{4}n^2(n+1)^2 = \frac{b^4}{n^4} \cdot \frac{n^2(n+1)^2}{4}$

$$= \frac{b^4}{4} \cdot \frac{n^2(n+1)^2}{n^4}; \ \text{für } n \to \infty \text{ folgt } \lim_{n \to \infty} O_n = \frac{b^4}{4}.$$

Für die Untersumme U_n gilt

$$U_{n} = \Delta x \cdot \underbrace{\left(0^{3} + \Delta x^{3} + (2\Delta x)^{3} + (3\Delta x)^{3} + ... + ((n-1)\Delta x)^{3}\right)}_{\Delta x^{3} \cdot \underbrace{\left(0^{3} + 1^{3} + 2^{3} + 3^{3} + ... + (n-1)^{3}\right)}_{\frac{1}{4}(n-1)^{2}n^{2}}}_{} = ... = \frac{b^{4}}{4} \cdot \frac{(n-1)^{2}n^{2}}{n^{4}};$$

für n $\rightarrow \infty$ folgt $\lim_{n \to \infty} U_n = \frac{b^4}{4}$. Insgesamt ist $\int_0^b x^3 dx = \frac{1}{4}b^4$.

Wie bei Beispiel 26.3.2 folgt daraus $\int_{0}^{b} x^{3} dx = \frac{1}{4}b^{4} - \frac{1}{4}a^{4}.$

- 2. a) $U_{100} \approx 0.78010 \,\mathrm{r}^2$, $O_{100} \approx 0.79010 \,\mathrm{r}^2$, $U_{10000} \approx 0.78535 \,\mathrm{r}^2$, $O_{10000} \approx 0.78545 \,\mathrm{r}^2$
 - b) $3.12042 \le \pi \le 3.16042$, $3.14139 \le \pi \le 3.14179$

E. Aufgaben zum Ergänzungsstoff

- b) $O_2 = 84$, $O_3 = 88$, $O_4 = 75$ c) $U_2 = 24$, $U_3 = 48$, $U_4 = 45$ 1. a) 62

 - d) Beim Übergang von O₂ zu O₃ und von O₃ zu O₄ bleiben nicht alle Unterteilungspunkte erhalten; deshalb kann die Obersumme kleiner werden, gleich bleiben, aber auch grösser werden. Hingegen bleiben beim Übergang von O2 zu O4 alle Unterteilungspunkte erhalten; deshalb kann O_4 nicht grösser sein als O_2 .

Dies gilt sinngemäss auch für die Untersummen U₂, U₃ und U₄.